
Lecture 7: Countable and uncountable sets

Definition 1: A set S is called denumerable if it is equivalent to N.

2: A set is called countable if it is either finite or denumerable.

3: A set which is not countable is called uncountable set.

Examples:

1. The set of all even natural number E is countable by f : N → E as f(n) = 2n.

2. The set S = {1
2
, 2
3
, 3
4
, 4
5
, . . .} is countable by f : N → S as f(n) = n

(n+1)
for all n ∈ N.

3. Z is countable by f : Z → N as

f(n) =

{
2n if n > 0

1− 2n if n ≤ 0.

Lemma: If a set X is infinite, then there exists a one-one function f : N → X.
Proof: Let X be infinite. Then ∃ an element say a1 ∈ X. We show by induction that for
every n ≥ 2, ∃ an ∈ X different from a1, . . . , an−1.
Now, a1 has been chosen, consider the set X \ {a1}. If this set is empty, then X = {a1},
which is finite. As X is infinite X \ {a1} is nonempty, so let a2 ∈ X \ {a1}. This proves the
basis case.
So suppose a1, . . . , am ∈ X has been chosen corresponding to the numbers 1, 2, . . . ,m, the
set X \ {a1, . . . , am} is non-empty, otherwise X = {a1, . . . , an} would be finite. So let
am+1 ∈ X \ {a1, a2, . . . , am}. This proves the induction steps.
Hence, corresponding to 1, there exists a1 ∈ X, and for each n ≥ 2, there exists an ∈ X

different from all of a1, . . . , an−1. Define the function f : N → X by f(n) = an. Then f is
one-one.

Theorem: For a non-empty set A following statements are equivalent:

1. A is countable

2. There is a surjective map from N to A

3. There is an injective map from A to N

proof (1) =⇒ (2). Suppose that A is countable. There are two cases-

• A is countably infinite

• A is finite

When A is countably infinite then A ≈ N. There exists a bijective map f : A → N, which is
also sujective. When A is finite then since A ̸= ϕ, so A ≈ Jn = {1, 2, . . . , n} for some positive
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integer n. That means there is a bijective map g : Jn → A. We define a map h : N → A by

h(k) :=

{
g(k) if k = 1, 2, . . . , n

g(1) otherwise
.

Thus h(N) = g(Jn) = A. So the map h is surjective.
(2) =⇒ (3). Assume (2) occurs. That means there exist a surjective map f : N → A. We
wish to find an injective map from A to N. Since f is surjective, for any a ∈ A, f−1(a) =

{x ∈ N|f(x) = a} is a non-empty subset of N. By well ordering property of N, f−1(a) has
least element for every a ∈ A, which is unique. We define a map g : A → N by g(a) =

the least element of f−1(a) for every a ∈ A. Clearly when a ̸= b then g(a) ̸= g(b) because
f−1(a) ∩ f−1(b) = ϕ. This proves (3).
(3) =⇒ (1). Suppose f : A → N is injective map. If A is finite, then nothing to prove.
Suppose A is an infinite. Then by above lemma, there exists injective map g : N → A. Now
by CSB-theorem, there exists a bijective map h : A → N. So A is countable.

1. Let X and Y be sets and let f : X → Y be an injective map. If Y is countable then
so is X.
Proof: Since Y is countable, There is a bijective map g : Y → N. Then the function
g ◦ f : X → N is injective. Hence by above theorem, X is countable.

2. A subset of a countable set is countable.
Proof: Let A be a countable set and S ⊆ A. Since A is countable, ∃ an injective map
f : A → N. Also inclusion map i : S → A is injective. Then the composition map
f ◦ i : S → N is an injective map. Hence S is countable.

3. The image of a countable set under any map is countable.
Proof: Let f : A → B be a surjective map, where A is a countable set. Since A is
countable so there exists a surjective map from g : N → A. Considering the composite
map fog : N → B is surjective as composition of two surjective maps is surjective.
Hence B is countable.

4. The product of two countable sets is countable.
Proof: Let A and B be countable sets. Then there exist bijective maps f : N → A

and g : N → B. Define a map h : N× N → A× B by h(m,n) = (f(m), g(n)). Clearly
h is a bijection. Also since N ≈ N× N, so N ≈ A×B.

5. Q is countable.
Proof: Define f : Q → Z × N by f(a

b
) = (a, b), here g.c.d.(a, b) = 1. Then f is

injective. Also, we get a bijective map g : Z×N → N. Then the map g ◦ f : Q → N is
injective and hence by the above lemma, Q is countable.

Theorem: The union of two countable sets is countable.
Proof: Let A and B be countable set. We may assume without loss of generality that A

and B are disjoint. We can do this since A∪B = A∪ (B \A), and Since B \A ⊆ B therefore
it is also countable. Let f : N → A and g : N → B be bijective maps. Define h : N → A∪B

by h(n) =

{
f(k) ifn = 2k

g(k) ifn = 2k − 1
.
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Then h is surjective. Hence by above theorem A ∪B is countable.

Theorem A countable union of countable sets is countable is countable.
Proof: Let {Ai}i∈N be a countable family, where each Ai is countable. Let X = ∪i∈NAi.
If X is finite then nothig to prove. So assume that X is not finite. Then by above lemma
there exists an injective map f : N → X.
Let x ∈ X. Then there exists at least one i ∈ N such that x ∈ Ai. Since Ai is countable, let
x appears at the k-th place in the enumeration of Ai.
Thus corresponding to each x ∈ X, we have a unique pair (i, k) of natural numbers. Now
define g : X → N by g(x) = 2i3k, where i is the smallest natural number such that x ∈ Ai

and x appears at k-th position in the enumeration of Ai. Note that g is one-one. Hence by
CSB theorem X is countable.

Theorem For any k ∈ N, the Cartesian product Nk is denumerable.
Proof: Note that the function f : N → Nk given by f(m) = (m, 1, . . . , 1) is one-one.
Let p1, p2, . . . , pk be the first k number of primes. Define g : Nk → N by g(m1,m2, . . . ,mk) =

pm1−1
1 .pm2−1

2 . . . . pmk−1
k . Then g is one-one. Now by CSB theorem Nk is denumerable.

Theorem A finite product of countable set is countable.
Proof: Let A1, . . . , Ak be countable sets. We want to show that X = A1 × . . . × Ak is
countable. If any Ai =, then X =. So assume that each Ai is nonempty. Since Ai is
nonempty, there exists a one-one function fi : Ai → N. Then the function f : X → Nk

defined by f(x1, . . . , xk) = (f1(x1), . . . , fk(xk)) is one-one. Let g : Nk → N be one-one
function defined by g(m1,m2, . . . ,mk) = pm1−1

1 .pm2−1
2 . . . . pmk−1

k . Then g ◦ f : X → N is
one-one. Hence X is countable.

Remark: The above result is not true for infinite product. For example if S := {0, 1}N,
then S is not countable. Although infinite product of a singleton set is countable.

Proof: Consider the set of all sequence on {0, 1} ı.e.,
∏∞

n=1{0, 1}

S = {f |f : N → {0, 1}}

we will prove set S is uncountable. if it is countable then ∃ a enumaration of elements of S,
as follows

fi = (ai1, ai2, ..., ain, ....) ∀i ∈ N

let us construct a sequence f ′ in {0,1} as follows.

f ′ = f ′
i ∀i ∈ N

such that f ′
i = 0 if fii = 1 & f ′

i = 1 if fii = 0. clearly this,

f ′ /∈ S

this shows that it is not possible to enumerate the elements of S.

Theorem: R is uncountable.
Proof: Suppose R is countable. We know that a subset of a countable set is countable.
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consider A = (0, 1) ⊆ R. We show that A is not countable. On the contrary, suppose A

is countable. Then we can write elements of A as r1, r2, r3 . . ., where ri can be written as
ri = di1di2di3 . . ., where dij ∈ {0, 1, 2, . . . , 9}. Now consider r = d1d2d3 . . . as follows:

di =

{
1 dii ̸= 1

2 dii = 1.

Then r ∈ A but not equal to ri. Thus A is uncountable and hence R.

Cantor’s Theorem: There exists no surjection from a set X to its power set P(X).

Proof: On the contrary suppose f : X → P(X) is an onto map. For eaxh x ∈ X, f(x) ⊆ X.
Consider the set Y = {x ∈ X : x ̸∈ f(x)}.
Since Y ∈ P(X) and f is onto, there exists s ∈ X with f(s) = Y . Then we have two
possibilities: s ∈ Y and s ̸∈ Y .
If s ∈ Y , then s ̸∈ f(s) = Y . A contradiction.
If s ̸∈ Y , then s ∈ f(s) = Y . A contradiction.
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